Clim. Past Discuss., 10, 1421–1446, 2014 www.clim-past-discuss.net/10/1421/2014/ doi:10.5194/cpd-10-1421-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available.

Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska

A. Tsushima^{1,2}, S. Matoba², T. Shiraiwa², S. Okamoto³, H. Sasaki^{1,2}, D. J. Solie⁴, and K. Yoshikawa⁵

¹Graduate School of Environmental Science, Hokkaido University, N10W5, Sapporo, 060-0810, Japan

²Institute of Low Temperature Science, Hokkaido University, N19W8,

Sapporo, 060-0819, Japan

³Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
 ⁴Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7320, USA
 ⁵Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-5860, USA

Received: 10 February 2014 - Accepted: 26 March 2014 - Published: 8 April 2014

Correspondence to: A. Tsushima (a_tsushima@pop.lowtem.hokudai.ac.jp)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

A 180.17 m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008 to allow reconstruction of centennial-scale climate change in the northern North Pacific. The 10 m-depth temperature in the borehole was $-2.2 \,^{\circ}$ C, which ⁵ corresponded to annual mean air temperature at the drilling site. In this ice core, there were many melt-refrozen layers due to high temperature and/or strong insolation during summer seasons. We analyzed stable hydrogen isotopes (δ D) and chemical species in the ice core. The ice core age was determined by annual counts of δ D and seasonal cycles of Na⁺, and we used reference horizons of tritium peaks in 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large forest fire in 2004 as age controls. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m w.eq. to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ±3 years. We estimated that the mean accumulation rate from 1997 to 2007 (except for 2004) was 1.88 m w.eq

¹⁵ per year. Our results suggest that temporal variation in δD and annual accumulation rates are strongly related to shifts in the Pacific Decadal Oscillation index (PDOI). The remarkable increase in annual precipitation since the 1970s has likely been the result of enhanced storm activity associated with shifts in the PDOI during winter in the Gulf of Alaska.

20 **1** Introduction

25

Various atmospheric chemical species transported by atmospheric circulation from oceans, forest fires, deserts, volcanic eruptions, and other sources are deposited with falling snow on glacier surfaces. Ice cores obtained from glaciers and ice sheets are important archives of paleoclimatic change (EPICA Community Members, 2004; Jouzel et al., 2007).

Ice cores can provide extremely valuable data for the analysis of paleoclimate, especially in the northern North Pacific region, which contains limited sources of past meteorological, climatological, and oceanographic data. To reconstruct centennial-scale climatic changes in the northern North Pacific, we studied several ice cores extracted from surrounding regions (Table 1). On the Asian side, in Kamchatka, a 212 m ice core was drilled at Mount Ushkovsky in 1998 (Shiraiwa et al., 1999). Shiraiwa and Yamaguchi (2002) showed that reconstructed accumulation rates at Mount Logan and Mount Ushkovsky in Kamchatka were nearly anticorrelated. In 2006, Matoba et al. (2007) drilled down to bedrock on a glacier at Mount Ichinsky and recovered a 115 m ice core. Matoba et al. (2011) determined that negative peaks of stable bydrogen iso-

- ¹⁰ ice core. Matoba et al. (2011) determined that negative peaks of stable hydrogen isotopes (δ D) could be used as an indicator of sea-ice extent in the Sea of Okhotsk. On the North American side, 50 and 212 m ice cores were drilled at Mount Wrangell in the Wrangell-St. Elias Mountains in 2003 and 2004, respectively (Shiraiwa et al., 2004; Kanamori et al., 2008). Yasunari et al. (2007) reported that δ D values, tritium con-
- ¹⁵ centrations, and dust concentrations showed seasonal variations from 1992 to 2002. Thus, some ice cores on the North American side were drilled in the coastal area of the Gulf of Alaska. To reconstruct climate changes in the northern North Pacific, several additional ice cores from various regions of Alaska and Kamchatka are needed.

During the summer of 2008, we obtained an ice core from the Alaska Range in 20 central Alaska, which preserves a climate record dating back several hundred years. In 21 this paper, we present high-resolution data from this Alaskan ice core for δD and major 22 ion values from the surface to 180.17 m. We also determined the detailed age structure 23 of the ice core. After the ice core had been dated, we estimated annual accumulation 26 rates and evaluated recent climatic changes in Alaska.

25 2 Sampling site and methods

An ice-drilling expedition was carried out at Aurora Peak in the Alaska Range in 2008. Aurora Peak (63.52° N, 146.54° W; 2825 m a.s.l.) is located about 15 km southeast of

Mount Hayes. A flat glacier-clad saddle north of Aurora Peak constitutes an ice divide between the Trident Glacier to the north and the Black Rapid/Susitna Glacier to the south (Fig. 1). During the drilling operation, the glacier surface and bed geometry were measured using GPS and ice-penetrating radar (Fukuda et al., 2011). The drilling site was located at the central highpoint of the saddle, with a total ice thickness of 252 ± 10 m, above a small bedrock dip. Surface flow velocity was measured by surveying poles placed in the glacier surface (Fukuda et al., 2011). The stake motion at 5

m from the drilling site was $< 0.5 \,\mathrm{m \, a^{-1}}$, confirming that the advection of ice from the surrounding regions was very small. Thus, the influence of horizontal motion on the ice core was considered to be small.

From May to June 2008, we drilled a 180.17 m-deep ice core. We used an electromechanical ice-core drilling system developed by Geotech Co. Ltd. (Nagoya, Japan). It took 101 h to drill down to 180.17 m at a pace of 1.77 m per hour. Ice cores 90–93 mm in diameter and ~ 0.5 m long were consistently recovered from each drilling run.

- ¹⁵ After the drilling had been completed, we examined the stratigraphy of the ice cores using transmitted light and measured the diameter, length, and weight of each ice core segment to calculate its density. The error in density measurements was 0.2%. The stratigraphic features showed that the study site should be categorized as a percolation zone. The pore close-off depth was about 55 m. Ice depth was converted into
- ²⁰ water-equivalent depth using the density profile. The water-equivalent depth at the bottom of the 180.17 m ice core was 149.68 m. After the drilling operation, we also measured borehole temperature and constructed a profile. The 10 m depth temperature in the borehole was -2.2 °C, which corresponds to annual mean air temperature at the drilling site. Ice cores were kept frozen and transported from the drilling site to the
- nearest airport, where they were loaded onto a freezer truck and transported to cold storage in Anchorage. From Anchorage, the samples were kept frozen and transported by a freezer cargo plane and truck to a cold room at the Institute of Low Temperature Science, Hokkaido University.

Ice-core samples were prepared for analysis of stable isotopes and major ions as described below in the cold laboratory (-20°C) at the Institute of Low Temperature Science, Hokkaido University, Japan. The ice core samples from the surface to 180.17 m were cut with a saw into quarters along their vertical axes and then cut horizontally
 ⁵ into approximately 0.1 m sections. To avoid possible contamination from drilling and processing, we shaved off the outer surface of each subsample from the surface to 70 m with a ceramic knife on a clean bench and washed each subsample from below 70 m with ultrapure water in a stainless steel strainer. The decontaminated samples were packed into polyethylene bags, melted at ambient temperature, and stored in polypropylene bottles. All of the equipment and bottles were pre-cleaned with ultrapure water in an ultrasonic bath.

The stable isotope composition of hydrogen (δ D) was measured using a mass spectrometer (Isoprime; GV Instruments, UK) with a Cr-reduction system (model PyrOH; Eurovector, Italy). The precision was ±0.1‰. The concentrations of major ions (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻, and SO₄²⁻) were measured using ion chromatography (model DX500; Dionex, USA) with a 0.5 mL sample loop. For the cation measurements, we used a CS12 column and a 20 mM CH₃SO₃H eluent. For the anion measurements, an AS14 column and 3.5 mM Na₂CO₃/1.0 mM NaHCO₃ eluent were used. Determination limits were 10 ppb for all other species. Tritium concentrations were measured

15

²⁰ using a liquid scintillation counter (model LSC-LB3; Aloka Co. Ltd., Japan). The tritium samples were prepared by mixing 10 mL subsamples selected after the initial age scale was determined using isotopes and chemistry. The vertical resolution of tritium measurements was 0.5 m.

3 Results

3.1 Ice core chronology

Figure 2 shows profiles of δD , melt feature percentage (MFP), and Na⁺ concentration for the ice core. The δD profile exhibits regular cyclic variations. MFP is measured as

- ⁵ the thickness of frozen ice layers in a 0.1 m section of the ice core. MFP is generally used as an indicator of summer temperatures at sites where the ice layers form by melting at the snow surface (Koerner, 1977). We found that the maximum (minimum) values of δD corresponded to the high (low) values of MFP in each cycle. At this site, refrozen layers form in the summer snow layer; because the annual accumulation rate
- ¹⁰ is very high, meltwater cannot penetrate the layer from the previous winter (Fig. 2). Therefore, we concluded that the δD profile showed obvious seasonal cycles, in which the high values appeared in summer layers.

The Na⁺ profile also exhibited regular cyclic variations. High concentrations of Na⁺ occurred in winter layers, as determined by the minimum values of δD . At the Eclipse

- ¹⁵ Ice Field in the Wrangell-St. Elias Range, Alaska, sea salt concentrations in the snow pack increase in the autumn–winter season owing to enhanced storm development in the Gulf of Alaska during winter (Yalcin et al., 2006). Our results therefore suggest that the Na⁺ peaks of the winter layers in the ice core from Aurora Peak are formed by a similar process.
- ²⁰ The age of the ice core was determined by counting annual layers of δD and Na⁺. Initially, we determined the winter season layer, which has both a negative peak of δD and a positive peak of Na⁺, temporally. If we could confirm that the MFP peak appeared between the temporal winter layers, we could conclusively determine the boundary of the annual layer at the negative peak of δD . The age of the first negative peak of δD
- was the winter season of 2007/2008. The following annual layers were separated by minimum values of δD and maximum values of Na⁺ in the winter layers (Fig. 2). By counting the annual layers, we estimated that the 149.68 m w.eq. ice core covered the period 1734–2008.

To confirm the dating based on δD and Na⁺ seasonal cycles, we compared the dating of the ice core with reference horizons of known age (Fig. 3). We found a NO_3^- and large NH_4^+ peak and a visible dirty layer at 8.59 m w.eq., which we ascribed to the year 2004. Generally, NO_3^- and NH_4^+ are released by forest fires (e.g. Legrand and Mayewski, 1997; Eichler et al., 2011). In 2004, a large fire oc-5 curred in central Alaska, with nearly double the area of any previously recorded event (~1300000 acres in total; US National Interagency Fire Center; http://www.nifc.gov/ fireInfo/fireInfostats_IgFires.html). We calculated non-sea-salt sulfate (nssSO₄²⁻) values to differentiate the sulfate signal related to volcanic eruptions from that of sea-saltderived sulfate. The total sulfate concentration was normalized using Na⁺ as a refer-10 ence species and using the sulfate-to-sodium ratio (0.252) in seawater (Wilson, 1975): $(nssSO_{A}^{2-}) = (SO_{A}^{2-}) - 0.252 (Na^{+})$ (Wilson, 1975; Legrand and Mayewski, 1997). On average, 94% of SO_4^{2-} was $nssSO_4^{2-}$. We found a sharp peak in $nssSO_4^{2-}$ and a visible dirty layer at 33.41 m w.eq., which we ascribed to the year 1992. Generally, $nssSO_4^{2-}$ is produced secondarily from volcanic SO_2^{-} . We interpret the SO_4^{2-} peak at 33.41 m w.eq. as corresponding to the eruption of Mount Spurr in 1992 (McGimsey et al., 2001). We also found a sharp Cl⁻/Na⁺ peak that we assigned to the year 1912. HCl is also produced secondarily from volcanic gas and it increases the $CI^/Na^+$ value in the snow pack. We determined that the CI⁻/Na⁺ peak and visibly dirty layer at 91.54 m w.eq. were related to the 1912 eruptions of Mount Katmai. We found sharp 20 tritium peaks at 63.3 and 62.4 m w.eq. that are reference horizons of H-bomb testing in 1963 and 1964 (Clausen and Hammer, 1988). The tritium peak of 1963 and eruption of Mount Katmai in 1912 are provided as reference horizons. The difference between ice core ages estimated by annual counts of δD and tritium was 3 years. In this paper, we discuss the ice core records following 1900 because we could not find an appropriate 25

reference horizon below 1912 at Mount Katmai to confirm dating, and there was also uncertainty in the flow model estimate of the vertical strain rate for the bottom part of the ice core.

3.2 Estimates of annual accumulation rates

The thicknesses of the annual layers of the ice core were determined from the δD profile, as described above. In a glacier, the thickness of annual layers becomes vertically strained by ice flow. To estimate annual accumulation rates from the ice core,

- we converted annual layer thickness to annual mass balance using the Dansgaard and Johnsen model (Dansgaard and Johnsen, 1969). We input the total ice thickness (H) of 216 m w.eq., as measured by ice-penetrating radar (Fukuda et al., 2011), the annual accumulation rate of 1.88 m w.eq. (average value from 1997 to 2007, excluding an exceptional value in 2004), and the critical depth (vertical strain rate constant down to *h* value)
- of 0.25 H (Fig. 4). We estimated annual accumulation rates from 1900 to 2007. The annual accumulation rate at Aurora Peak and ice core data from a nearby site are presented in Table 1. The average annual accumulation rate at Aurora Peak from 2003 to 2007 was 3.08 m w.eq., similar to 2.43 m w.eq. a⁻¹ at Kahiltna Pass (2970 m a.s.l.), Denali National Park, Alaska (Kelsey et al., 2010). However, the average annual accumulation rate at Aurora Peak (1.84 w.eq. a⁻¹; 1992–2003) was considerably smaller than
- 15 Tation rate at Adrora Peak (1.64 w.eq. a⁻¹, 1992–2003) was considerably smaller than that (2.49–2.66 m w.eq. a⁻¹; 1992–2003) at Mount Wrangell (4100 m a.s.l.) in Wrangell-St. Elias National Park, Alaska (Yasunari et al., 2007; Kanamori et al., 2008). One obvious reason that Mount Wrangell receives higher annual precipitation than Aurora Peak is that Mount Wrangell is near the coast.

20 4 Discussion

25

Evaluation of recent climate change in Alaska

We compared the δD values and annual accumulation rates estimated from the ice core with air temperatures and annual precipitation, respectively, observed at weather stations located in Alaska (Table 2 and Fig. 1; climatological data provided by the Alaska Climate Research Center, http://climate.gi.alaska.edu/index.html, and the

US Geological Survey, http://ak.water.usgs.gov/glaciology/gulkana/index.html). Figure 5 shows the calculated correlate coefficients between the 6 year running averages of δD in the ice core and the air temperatures observed at weather stations in Alaska and between the annual accumulation rates estimated from the ice core and annual precipitation observed at the weather stations. The δD values and air temperatures were highly correlated in both the central and southern areas (coastal area of the Gulf of Alaska), and the annual accumulation rates and precipitation were also correlated in the southern area. Our results suggest that δD values reflect the air temperatures

of both central Alaska and the coastal area of the Gulf of Alaska, and that the annual accumulation rates reflect the precipitation in the coastal area of the Gulf of Alaska.

Figure 4 shows that annual accumulation rates estimated from the ice core increased gradually (8 mm year⁻¹) from 1900 and then increased sharply (23 mm year⁻¹) around 1976. This trend was also observed in the precipitation data obtained from the 12 weather stations (Barrow, Kotzebue, Bettels, Big delta, Bethel, Anchorage, Homer, Yakutat, King Salmon, Juneau, Kodiak, Cold Bay; Table 3), which corresponded to the ice core record and was observed at both the coastal area of the Gulf of Alaska and

a high latitude area. The difference between the annual accumulation rate at Aurora Peak and the annual precipitation was likely due to differences in altitude.

15

In an analysis of an ice core from Mount Logan (5343 m a.s.l.), Moore et al. (2002) found that annual accumulation increased slightly from 1850 to 2000, and sharply from 1976. They suggested that the sharp increase in annual accumulation after 1976 was associated with a shift in the Pacific Decadal Oscillation index (PDOI).

Figure 6 shows the temporal variation in annual average δD values, annual accumulation rates, detrended annual accumulation rates, and the PDOI from 1900 to 2007

²⁵ (http://jisao.washington.edu/pdo/PDO.latest; Mantua et al., 1997; Zhang et al., 1997). The variation in δD values corresponded to PDOI values. This correlation was more obvious in the 6 year running averages; the correlation was 0.55, which was statistically significant at the 95% level. The PDOI shifted in 1923, 1943, and 1976, and the average values of δD in periods I (1976–2007), II (1943–1975), and III (1923–1942) were

178.8, 181.9, and 178.3%, respectively (Table 4). Differences observed among the average values of δD during these three periods were significant at the 95% level. Thus, periods (I, II, III) when the PDOI increased (decreased) corresponded to the periods when δD increased (decreased). Papineau et al. (2001) reported that temperature and

- ⁵ the PDOI were correlated in central Alaska, especially in winter. Table 5 presents the variation in air temperature recorded at 15 weather stations during periods I, II, and III, which were correlated with δD (R < 0.50, p < 0.05). The average temperature anomalies for periods I, II, and III were +0.55, -0.65, and +0.73, respectively. The average δD anomalies for periods I, II, and III were +1.61, -1.50, and +2.08, respectively. We compared the anomaly values for air temperature with δD values for the ice core and
- found that they were correlated (Fig. 7). This suggests that air temperatures and δD have the same relative impact on the PDOI.

In contrast, the annual accumulation rates did not show a relationship with PDOI, likely due to the sharp increase in rates that was observed in the latter part of the

- ¹⁵ century. We excluded the effect of the long-term increasing trend from 1900 to clarify the short-term trend. For the period 1900–2007, the correlation between detrended annual accumulation rates and the PDOI was 0.47, which was statistically significant at the 95% level. Therefore, our results suggest that the annual accumulation rate is associated with the PDOI.
- Both Na⁺ concentrations and Na⁺ Flux in the ice core increased from the 1970s, along with the annual accumulation rate, although the increase in Na⁺ concentrations was slow from the beginning of the 1900s (Fig. 4). The average increases in Na⁺ from 1976 to 2007 and 1900 to 1975 were 710 and 8 ppt year⁻¹, respectively. Na⁺ in North Pacific ice cores originates from sea salt, and precipitation caused by strong storm activity contains high concentrations of sea salt. As discussed previously, the Aurora
- Peak ice core also records winter precipitation that contains high concentrations of sea salt, which were likely caused by enhanced development of traveling cyclones. Suzuki (1983) and Suzuki and Endo (1995) observed winter precipitation in Japan, and reported that the concentration of sea salt in precipitation was controlled by the position

and strength of storms. Our results suggest that the increased Na⁺ concentrations after the 1970s resulted from changes in the position and/or strength of winter storms in the Gulf of Alaska. We also suggest that the increased annual accumulation at Aurora Peak from 1976 was a result of changes in storm position and/or strength, which might have been associated with the PDOI shift in 1976.

5 Conclusions

A 180.17 m ice core from Aurora Peak in the Alaska Range was analyzed for δD and chemical species. We estimated the age of the ice core by counting annual cycles of δD and Na⁺. We used tritium-peak reference horizons of 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large-scale forest fire in 2004 as age controls. Here, we showed that the chronology of the Aurora Peak ice core from 95.61 m w.eq. to the top corresponds to the period from 1900 to the summer season of 2008. After dating, we estimated annual accumulation rates using annual layer thicknesses from the ice core, which was corrected using the Dansgaard and Johnsen (1969) approach. The δD values reflected the temperatures of both central Alaska and the coastal area of the Gulf of Alaska, and the annual accumulation rate reflected the annual precipitation in the coastal area of the Gulf of Alaska. The

- δD values were highly correlated with the PDOI. The average anomaly for air temperature at some of the weather stations during periods I (1976–2007), II (1943–1975),
- and III (1923–1942) were +0.55, -0.65, and +0.73, respectively. During periods I, II, and III, increases (decreases) in the PDOI corresponded to increases (decreases) in temperature. Annual accumulation rates increased gradually from 1900, which corresponded to increases in annual precipitation recorded at weather stations in Alaska. From 1976, annual accumulation rates rose sharply; around the same time, concentra-
- ²⁵ tions of sea salt began to increase as well. We attribute this phenomenon to enhanced winter storm development in the Gulf of Alaska as a result of the 1976 shift in the PDOI. Consequently, the δD values and annual accumulation rates calculated from the Aurora

Peak ice core can be used as indicators of air temperature and annual precipitation, respectively, in the coastal area of the Gulf of Alaska, and recent climatic change in the coastal area of the Gulf of Alaska has been strongly associated with shifts in the PDOI. We were able to verify that the lower part of the Aurora Peak ice core contained invaluable information about climate change in Alaska and the northern North Pacific.

Acknowledgements. We thank S. Sugiyama and T. Fukuda for their help in the field research. We also thank C. S. Benson for his kind support, and M. Watanabe for ion chromatography measurements. P. Claus of Ultima Thule Outfitters supported our flight operation with his excellent aircraft. We are very grateful to Valérie Masson-Delmotte of the Scientific Editor for valuable comments and suggestions. This work is a contribution to the Amur-Okhotsk Project, promoted by the Research Institute of Humanity and Nature. This research was supported by a Grant-In-Aid for Scientific Research (B) (No. 19340137 to PI T. Shiraiwa) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

¹⁵ Clausen, H. B. and Hammer, C. U.: The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations, Ann. Glaciol., 10, 16–22, 1988.

Dansgaard, W. and Johnson, S. J.: A flow model and time scale for the ice core from Camp Century, Greenland, J. Glaciol., 8, 215–223, 1969.

EPICA Community Members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, doi:10.1038/nature02599, 2004.

 628, doi:10.1038/nature02599, 2004.
 Fukuda, T., Sugiyama, S., Matoba, S., and Shiraiwa, T.: Glacier flow measurement and radioecho sounding at Aurora Peak, Alaska, in 2008, Ann. Glaciol., 52, 138–142, 2011.

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuen-

²⁵ berger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years, Science, 317, 793–797, doi:10.1126/science.1141038, 2007.

- Kanamori, S., Benson, C. S., Truffer, M., Matoba, S., Solie, D. J., and Shiraiwa, T.: Seasonality of snow accumulation at Mount Wrangell, Alaska, USA, J. Glaciol., 54, 273–278, 2008.
- Kelsey, E. P., Wake, C. P., Kreutz, K., and Osterberg, E.: Ice layers as an indicator of summer warmth and atmospheric blocking in Alaska, J. Glaciol., 56, 715–722, 2010.
- 5 Koerner, R. M.: Devon Island ice cap Core Stratigraphy and paleoclimate. Science, 196, 15–18, doi:10.1126/science.196.4285.15, 1977.
 - Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: a review, Rev. Geophys., 35, 219-243. doi:10.1029/96RG03527. 1997.
 - Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal
- climate oscillation with impacts on salmon production, B. Am. Meteorol. Soc., 78, 1069–1079, 10 1997.
 - Matoba, S., Ushakov, S. V., Shimbori, K., Sasaki, H., Yamasaki, T., Ovshannikov, A. A., Manevich, A. G., Zhideleeva, T. M., Kutuzov, S., Muravyev, Y. D., and Shiraiwa, T.: The glaciological expedition to Mount Ichinsky, Kamchatka, Russia, Bull. Glaciol. Res., 24, 79-85, 2007.
 - Matoba, S., Shiraiwa, T., Tsushima, A., Sasaki, H., and Muravvev, Y. D.: Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka, Ann. Glaciol., 52, 44-50, 2011.

McGimsey, R. G., Neal, C. A., and Riley, C. M.: Areal Distribution, Thickness, Mass, Vol-

- ume, and Grain Size of Tephra-Fall Deposits from the 1992 Eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska, US Geol. Surv. Open File Rep. 01-370, 38 pp., available at: http://pubs.usgs.gov/of/2001/0370/ (last access: April 2014), 2001.
 - Moore, G. W. K., Holdsworth, G., and Alverson, K.: Climate change in the North Pacific region over the past three centuries, Nature, 420, 401–403, doi:10.1038/nature01229, 2002.
- ²⁵ Papineau J. M.: Wintertime temperature anomalies in Alaska correlated with ENSO and PDO, Int. J. Climatol., 21, 1577–1592, 2001.
 - Shiraiwa, T. and Yamaguchi, S.: Reconstruction of glacier mass balances and climate changes in the Kamchatka Peninsula, J. Geogr. Tokyo, 111, 476-485, 2002.

Shiraiwa, T., Nishio, F., Kameda, T., Takahashi, A., Toyama, Y., Muravyev, Y. D., and Obsyan-

- nikov, A.: Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia, Seppyo, J. Jpn. Soc. 30 Snow Ice, 61, 25-40, doi:10.5331/seppyo.61.25, 1999.
 - Shiraiwa, T., Kanamori, S., Benson, C. S., Solie, D., and Muravyev, Y. D.: Shallow ice-core drilling at Mount Wrangell, Alaska, Bull. Glaciol. Res., 21, 71–77, 2004.

20

15

Suzuki, K.: A chemical study of snow in Sapporo, Geogr. Rev. Jpn., 56, 171–184, 1983.
Suzuki, K. and Endo, Y.: Relation of Na⁺ concentration and δ¹⁸O in winter precipitation with weather conditions, Geophys. Res. Lett., 22, 591–594, doi:10.1029/95GL00160, 1995.
Wilson, T. R. S.: Salinity and the major elements of sea water, in: Chemical Oceanography,

 edited by: Riley, J. P. and Skittow, G., Academic Press, London, 365–413, 1975.
 Yalcin, K., Wake, C. P., Kang, S., Kreutz, K. J., and Whitlow, S. I.: Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon Territory, Canada, Ann. Glaciol., 43, 230–238, 2006.

Yasunari, T. J., Shiraiwa, T., Kanamori, S., Fujii, Y., Igarashi, M., Yamazaki, K., Benson, C.

S., and Hondoh, T.: Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska, J. Geophys. Res., 112, D10208, doi:10.1029/2006JD008121, 2007.

Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like interdecadal variability, J. Climate, 10, 1004–1020, 1997.

le 1. Infori	mation fror	m the n	orthern	North I	Pacific re	cords.			
Site	Drilling year	Latitude	Longitude	Elevation	Mean temp.	Accum. rate	Depth	Time span	Туре
	(AD)			(m a.s.l.)	(°C)	(m w.eq. ⁻¹)	(m)	(year)	
				North	h America				
Aurora Peak*	2008	63.52° N	146.54° W	2825	-2.2	1.88 (2007–1997) 3.08 (2007–2003) 1.84 (2003–1992)	180.17	274	Ice Core
Logan* ^a	1980	60.34° N	140.24° W	5340	-		103	301	Ice Core
Wrangell*b	2003 ^{*c} , 2004 ^{*d}	62.00° N	144.00° W	4317	-18.9	2.49-2.66 (1992-2003)	50, 212	12	Ice Core
Kahiltna Pass* ^e	2008	63.07° N	151.17° W	2970	-	2.43 (2007–2003)	18.77	5	Ice Core
				Kar	mchatka				
Ushkovsky* ^f	1998	56.04° N	160.28° E	3903	-15.7	0.55* ^g	211.7		Ice Core
Ichinsky*h	2006	55.46° N	157.55° E	3607	-13.0	0.68 ^{*i}	115		Ice Core

* This work, ^a Moore et al. (2002), ^b Shiraiwa et al. (2004), ^c Yasunari et al. (2007), ^d Kanamori et al. (2008), ^e Kelsey et al. (2010), ^f Shiraiwa et al. (1999), ^g Shiraiwa and Yamaguchi (2002), ^h Matoba et al. (2007), ⁱ Matoba et al. (2011).

CPD						
10, 1421–	10, 1421–1446, 2014					
Reconstruction of recent climate change in Alaska A. Tsushima et al.						
Title	Dogo					
The	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	×					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-frier	Printer-friendly Version					
Interactive	Interactive Discussion					

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

No.	Weather station site	Since	e The number of data				
		(AD)	Temperature (°C)		Precipitation (mm)		
			Annual	6 year ave.	Annual	6 year ave.	
1	BARROW	1901	94	77	92	76	
2	KOTZEBUE	1897	81	65	76	64	
3	BETTELS	1951	56	51	55	51	
4	NOME	1900	102	96	101	96	
5	FAIR BANKS	1929	78	73	76	72	
6	BIG DELTA	1937	67	61	67	62	
7	MCGRATH	1941	66	61	65	61	
8	GULKANA GLACIER	1968	34	34	37	34	
9	TALKEETNA	1918	89	84	88	84	
10	BETHEL	1923	81	70	80	70	
11	ANCHORAGE	1952	55	50	54	50	
12	HOMER	1932	75	70	74	70	
13	YAKUTAT	1917	87	70	86	70	
14	ST PAUL	1892	58	53	57	53	
15	KING SALMON	1917	87	67	84	67	
16	JUNEAU	1936	68	62	70	66	
17	KODIAK	1931	76	71	75	71	
18	COLD BAY	1950	57	52	56	52	
19	ANNETTE	1941	66	61	65	61	

Table 2. Temperature and precipitation data recorded at weather stations located in Alaska.

Table 3. The annual accumulation rate at Aurora Peak and annual precipitation observed at weather stations after 1900.

Weather station site	Average (m w.eq.)	Increase rate (%)
Aurora Peak	1.25	199
BARROW	0.10	119
KOTZEBUE	0.21	142
BETTELS	0.36	109
BIG DELTA	0.28	104
BETHEL	0.44	101
ANCHORAGE	0.40	107
HOMER	0.62	103
YAKUTAT	3.49	118
KING SALMON	0.48	113
JUNEAU	1.38	122
KODIAK	1.69	121
COLD BAY	0.97	123

Discussion Pa	CF 10, 1421–1	PD 1446, 2014				
aper Discussio	Reconstr recent o change i A. Tsushi	uction of climate n Alaska ima et al.				
n Paper	Title Abstract	Page Introduction				
—	Conclusions	References				
Discuss	Tables	Figures				
ion P	14	►I.				
aper	•					
	Back	Close				
Discuss	Full Scre	en / Esc				
ion P	Interactive	Interactive Discussion				
aper	6	ву				

Table 4. Average values of stable hydrogen isotopes (δ D) from (I) 1976 to 2007, (II) 1943 to 1975, and (III) 1923 to 1942.

Period	I	II	III
Year	2007–1976	1975–1943	1942–1923
δD (‰)	–178.8	–181.9	–178.3

CI 10, 1421–	CPD 10, 1421–1446, 2014						
Reconstruction of recent climate change in Alaska A. Tsushima et al.							
Title	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
I	۶I						
•							
Back	Close						
Full Scre	Full Screen / Esc						
Printer-frier	Printer-friendly Version						
Interactive	Interactive Discussion						

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 5. Temperature anomalies for periods I (2007–1976), II (1975–1943), and III (1942–1923)recorded at 15 weather stations in Alaska.

Weather station site	Ave.	Ave. I*		II*'	II* ^a		III* ^b	
		PDOI Positive phase		PDOI Negative phase		PDOI Positive phase		
	Temp.	Ave. Temp.	Anomaly	Ave. Temp.	Anomaly	Ave. Temp.	Anomaly	
	(°Č)	(°Č)		(°C)		(°C)		
BETTELS	-5.30	-4.70	0.60	-6.07	-0.77	-	-	
FAIR BANKS	-3.25	-2.19	1.05	-3.60	-0.36	-4.81	-1.56	
BIG DELTA	-1.95	-1.39	0.56	-2.81	-0.86	1.56	3.50	
MCGRATH	-3.26	-2.64	0.63	-4.01	-0.75	-0.94	2.32	
GULKANA GLACIER	-3.83	-3.51	0.32	-4.93	-1.09	_	-	
TALKEETNA	1.07	1.81	0.75	0.19	-0.87	1.26	0.19	
ANCHORAGE	2.41	2.89	0.48	1.77	-0.64	_	-	
HOMER	3.02	3.82	0.80	2.34	-0.69	2.76	-0.26	
YAKUTAT	4.28	4.63	0.35	3.54	-0.75	4.87	0.59	
ST PAUL	1.63	2.05	0.42	1.13	-0.50	_	-	
KING SALMON	0.99	1.83	0.83	0.39	-0.61	0.77	-0.23	
JUNEAU	5.04	5.59	0.55	4.32	-0.72	6.56	1.52	
KODIAK	5.00	5.28	0.28	4.55	-0.45	5.47	0.48	
COLD BAY	3.55	3.86	0.31	3.17	-0.38	-	-	
ANNETTE	7.77	8.10	0.32	7.41	-0.36	8.53	0.75	

* 2007–1976, ^a 1976–1943, ^b 1942–1923

Fig. 1. Location of the study area and drilling site at Aurora Peak in the central Alaska Range and meteorological data sites. (Meteorological data sites: 1 Barrow, 2 Kotzebue, 3 Bettels, 4 Nome, 5 Fairbanks, 6 Big delta, 7 McGrath, 8 Gulkana Glacier, 9 Talkeetna, 10 Bethel, 11 Anchorage, 12 Homer, 13 Yakutat, 14 St Paul, 15 King Salmon, 16 Juneau, 17 Kodiak, 18 Cold Bay, 19 Annette).

Fig. 2. (a) Melt feature percentage (MFP) plotted against snow depth scale between 0 and 180 m. Then, we shows the variation in snow depth scale between 30 and 50 m, **(b)** MFP, **(c)** stable hydrogen isotopes (δ D), and **(d)** Na⁺. Gray shading indicates winter seasons. The dotted lines show the compartmental depths of the annual layers.

Fig. 4. (a) Annual layer thicknesses of the Aurora Peak ice core (heavy gray line) and annual accumulation rates corrected by the Dansgaard-Johnsen model (black line). **(b)** Temporal variations in average annual Na^+ concentrations (black line) and Na^+ flux (gray dotted line).

Fig. 5. (a) Correlations between 6 year running-average stable hydrogen isotope (δ D) values of the Aurora Peak ice core and 6 year running-average temperatures at the weather stations. **(b)** Correlations between 6 year running-average annual accumulation rates estimated for the Aurora Peak ice core and 6 year running-average precipitation data at the weather stations. The heavy black circles indicate sites that were statistically significant at the 95 % level.

Fig. 6. (a) Temporal variation in stable hydrogen isotopes (δ D). The heavy gray lines indicate average values of δ D in periods I (2007–1976), II (1975–1943), and III (1942–1923). **(b)** Detrended annual accumulation rates, which exclude the increasing trend from the annual accumulation rates of the Aurora Peak ice core. Dotted lines show the increasing trend from 1900. **(d)** The Pacific Decadal Oscillation index (PDO). Annual mean value given by the gray line, 6 year running averages given by the heavy black line.

Fig. 7. Correlation between the average anomaly for air temperature recorded at 15 weather stations in Alaska and stable hydrogen isotopes (δ D) during periods I (2007–1976), II (1975–1943), and III (1942–1923).

